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1. Executive Summary 
 

The objective of this study report is to understand the effect of various properties of concrete recipes and perform an 

independent analysis to build a model or set of models to predict compressive strength from these mixture components. It 

is believed that the compressive strength is a highly non-linear relationship between age and ingredients. We chose three 

statistical models to get the response of the components which influence the strength of the concrete. The methods are: 

● Multivariate Linear Regression 

● Multivariate Regression with only interaction terms 

● Multivariate Regression with Second Order and Interaction terms 

Further, in these models, we used different regression techniques. The techniques which we used are: 

● Box-cox transformation of the Response 

● Reducing the model by removing insignificant variables 

● Best Subset Selection 

● Ridge Regression 

● Lasso Regression 

● Tree-Based Models with boosting 

With final discussion on observed values, we chose reduced second order model with 34 predictors and optimized by box-

cox transformed response, supported by regularization techniques. The R-squared value came out to be 0.8091 with a mean 

squared error of 5.066599. Compressive Strength of the concrete increases as the age and proportion of contents increase. 

The most important predictor that influences the compressive strength is the interaction of amount of Cement and Age. 
 

2. Introduction 
 

The large design build construction firm is keen on understanding the various properties of concrete recipes and predict 

total compressive strength. After a detailed analysis, the company has already had observational data from the analysis of 

concrete strength and want to perform an independent analysis using the data to build a model or set of models to predict 

compressive strength from the mixture components.  
 

The company specifically wants to follow 3 working objectives: First, to prioritize the ability to accurately predict the 

compressive strength of concrete. Second, to explicitly state which components influence the strength along with an estimate 

of the relationship between those components and strength. Finally, to specify any important optimal values for the various 

components of the mixtures to optimize concrete strength. 
 

3. Data 
 

Aiming to help a construction firm understand and predict the effect of each concrete component on the product compressive 

strength, studies have been conducted on the previous production and a set of observational data has been achieved. The 

input observation data includes seven different concrete components (cement, fly ash, etc.) and the specific age of the 

concrete in days, only output data in this set is the compressive strength which was determined from the laboratory. All data 

recorded are quantitative and none of the attribute value was missed. The data set consists of 1030 observations of the nine 

variables in total, the correlation scatterplot and the colored map of raw data are shown in figures 1 and 2 separately below. 

It can be observed from these two plots that no obvious correlation exists.  

 



 

Figure: Pairwise Scatter Plot of the data 

4. Methods 
 

We started the model establishment with a simple additive model where all predictors were included. As a result, only 

coarse aggregate and fine aggregate were insignificant. Thus, we reduced those two components and ran the linear 

regression again. Based on the Box-cox transform, we calculated the lambda value for a simple additive model at 0.707, 

then refitted the simple additive model with the transformed response. Principal components regression was also adopted 

in our analysis. For the simple additive model, 8 principal components were selected and an R-squared value of 0.6155 

was achieved. Besides, we applied a tree-based regression method. The tree-based regression and pruned tree regression 

has cement, water, age, and slag variables as important variables; however, it does not give a good fit. Bagging improves 

the fit and explains the % Var of 92.27 with eight variables. Random forest regression with 5 variables results in % Var 

explained is 92.45 and important variables are the same as bagging. Boosting resulted in a better fit with age and cement 

being important parameters.  

Subsequently, we add interaction terms in the model, the R square value increased significantly from 0.6125 to 0.8279. 

However, the residual vs. fitted plot was not satisfying enough. Thus, we reduced the aggregate predictors again. The plot 

of the interaction reduced additive model indicates that the model is more precise now at a cost of decreased R-square 

value. 

After that, we build a completed second order model to test the data. While the R-square value and analysis plots show 

that the performance of the completed second order model doesn’t exceed that of the interaction model. PCR analysis was 

added for this model and several principal component numbers were tested. For model constructed with 20 principal 

components, the R-square value of 0.78 was obtained which is even lower than the ordinary least square result. However, 

if all 44 principal components were used to construct the model it will give the R-squared of 0.8106 which is slightly 

better than the original one. The basic model and pruned regression tree model result indicates that they are likely to 

overfit the data, leading to the poor test set performance visible in figure 7.3. Bagging has a mean of squared residuals as 

21.79855 and the percentage of variance explained is 92.18. Random forest regression for 12 predictor variables 



explained % Var of 92.37, on the other hand, all 44 predictor variables resulted in a % Var of 92.13. Boosting performed 

better by fitting well among all tree-based regressions which is shown in figure 7.4. The most important variable is 

cement-age interaction. Water-finite aggregate and slag-superplasticizer interactions are also better than other variables 

(see figure 7.5).s 

5. Results 
Table.1: Shows R-squared values and Mean Square Errors of the concrete strength of performed models 

 

Model Technique R-Squared MSE 

Simple Linear Model Full 0.6125 107.1972 

Reduced 0.6118 107.6148 

Box-Cox 0.6083 13.63576 

Best-Subset 0.6155 109.0982 

Ridge/Lasso 0.6068/0.6067 109.73/109.7466 

 Principal Component 

Regression 

0.6125  

 Bagging 0.9227  

 Random Forest 0.9245  

Interaction Model 

 

 

Full 0.8279 36.78846 

Reduced 0.768 60.73244 

Box-Cox 0.8294 45.33518 

Best-Subset 0.7567 76.276 

Ridge/Lasso 0.7304/0.7308 75.253/75.133 

Second Order Model 

 

 

Full 0.8021 52.8096 

Reduced 0.7819 59.22072 

Box-Cox 0.8026 5.002225 

Best-Subset 0.8105 59.70802 

Ridge/Lasso 0.762/0.780 61.687/61.381 

Principal Component 

Regression 

0.8106  

Bagging 0.9227  

Random Forest 0.9245  

Boosting 0.9911  

Reduced (Optimized) 0.8091 5.066599 

 



 

 

Results convey that few of the models have a great R-squared values but that does not mean that it is the best model. The 

best model found to be the second order reduced model optimized by box-cox transformation and this is supported by tree- 

based model.  

The Final Estimated Equation Came out to be: 

 

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒗𝒆 𝒔𝒕𝒓𝒆𝒏𝒈𝒕𝒉
=  −𝟎. 𝟎𝟎𝟎𝟐𝟎𝟐𝟑𝑨𝒈𝒆𝟐 − 𝟎. 𝟎𝟎𝟎𝟏𝟐𝟐𝟑𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆𝟐 − 𝟎. 𝟎𝟎𝟗𝟎𝟓𝟗𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓𝟐

−  𝟎. 𝟎𝟎𝟐𝟒𝟑𝟐𝑾𝒂𝒕𝒆𝒓𝟐 + 𝟎. 𝟎𝟎𝟎𝟏𝟐𝟎𝟔𝑭𝒍𝒚 𝑨𝒔𝒉𝟐 −  𝟎. 𝟎𝟎𝟎𝟎𝟒𝟑𝟏𝟔𝑪𝒆𝒎𝒆𝒏𝒕𝟐

+ 𝟎. 𝟎𝟎𝟎𝟎𝟗𝟑𝟎𝟔(𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆 ∗ 𝑨𝒈𝒆) 
− 𝟎. 𝟎𝟎𝟎𝟎𝟕𝟏𝟓𝟖(𝑪𝒐𝒖𝒓𝒔𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆 ∗ 𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆)
+ 𝟎. 𝟎𝟎𝟎𝟏𝟑𝟎𝟖 (𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓 ∗ 𝑨𝒈𝒆) − 𝟎. 𝟎𝟎𝟑𝟎𝟗𝟏(𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓 ∗ 𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆)
− 𝟎. 𝟎𝟎𝟐𝟒𝟎𝟓(𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓 ∗ 𝑪𝒐𝒖𝒓𝒔𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆)
− 𝟎. 𝟎𝟎𝟏𝟐𝟎𝟒(𝑾𝒂𝒕𝒆𝒓 ∗ 𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆) − 𝟎. 𝟎𝟏𝟎𝟑𝟎(𝑾𝒂𝒕𝒆𝒓 ∗ 𝑪𝒐𝒖𝒓𝒔𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆)
− 𝟎. 𝟎𝟎𝟕𝟕𝟑𝟗(𝑾𝒂𝒕𝒆𝒓 ∗ 𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓) + 𝟎. 𝟎𝟎𝟎𝟐𝟑𝟖𝟔(𝑭𝒍𝒚 𝒂𝒔𝒉 ∗ 𝑨𝒈𝒆)
+ 𝟎. 𝟎𝟎𝟎𝟎𝟕𝟔𝟓𝟑(𝑭𝒍𝒚 𝒂𝒔𝒉 ∗ 𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆) + 𝟎. 𝟎𝟎𝟎𝟏𝟎𝟎𝟗(𝑭𝒍𝒚 𝒂𝒔𝒉 ∗ 𝑪𝒐𝒖𝒓𝒔𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆)
− 𝟎. 𝟎𝟎𝟓𝟓𝟐𝟎(𝑭𝒍𝒚 𝒂𝒔𝒉 ∗ 𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓) − 𝟎. 𝟎𝟎𝟎𝟗𝟕𝟐𝟓(𝑭𝒍𝒚 𝒂𝒔𝒉 ∗ 𝑾𝒂𝒕𝒆𝒓)
+ 𝟎. 𝟎𝟎𝟎𝟏𝟑𝟎𝟐(𝑺𝒍𝒂𝒈 ∗ 𝑨𝒈𝒆) − 𝟎. 𝟎𝟎𝟐𝟗𝟒𝟎(𝑺𝒍𝒂𝒈 ∗ 𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓)
− 𝟎. 𝟎𝟎𝟎𝟕𝟒𝟑𝟕(𝑺𝒍𝒂𝒈 ∗ 𝑾𝒂𝒕𝒆𝒓) + 𝟎. 𝟎𝟎𝟎𝟐𝟏𝟔𝟐(𝑺𝒍𝒂𝒈 ∗ 𝑭𝒍𝒚 𝒂𝒔𝒉) + 𝟎. 𝟎𝟎𝟎𝟎𝟒𝟔𝟑𝟐(𝑪𝒆𝒎𝒆𝒏𝒕 ∗ 𝑨𝒈𝒆)
− 𝟎. 𝟎𝟎𝟎𝟎𝟕𝟏𝟑𝟏(𝑪𝒆𝒎𝒆𝒏𝒕 ∗ 𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆) − 𝟎. 𝟎𝟎𝟑𝟎𝟏𝟎(𝑪𝒆𝒎𝒆𝒏𝒕 ∗ 𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓)
− 𝟎. 𝟎𝟎𝟎𝟗𝟐𝟔𝟔(𝑪𝒆𝒎𝒆𝒏𝒕 ∗ 𝑾𝒂𝒕𝒆𝒓) + 𝟎. 𝟎𝟎𝟎𝟏𝟏𝟕𝟔(𝑪𝒆𝒎𝒆𝒏𝒕 ∗ 𝑭𝒍𝒚 𝒂𝒔𝒉) + 𝟎. 𝟓𝟎𝟖𝟒𝑭𝒊𝒏𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆
+ 𝟎. 𝟐𝟓𝟎𝟏𝑪𝒐𝒖𝒓𝒔𝒆 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆 + 𝟕. 𝟕𝟕𝟒𝟓𝑺𝒖𝒑𝒆𝒓𝒑𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒛𝒆𝒓 + 𝟑. 𝟏𝟕𝟎𝑾𝒂𝒕𝒆𝒓 + 𝟎. 𝟏𝟔𝟒𝟗𝑺𝒍𝒂𝒈
+ 𝟎. 𝟐𝟗𝟑𝟒𝑪𝒆𝒎𝒆𝒏𝒕 − 𝟔𝟔𝟑. 𝟐 

 

All resulting and supported values have been provided in the table above. The plots below depict the fitting of the models. 

 

  

 

Figure: Casual Regression 1st Order Figure: Reduced 1st order 

  



  

Figure: Interaction Model Terms Figure: Reduced Interaction Model 

  

  

Figure: Complete Second Order Figure: Reduced Second Order Model 

 

6. Conclusion 

 

The project involved the analysis of concrete data to accurately predict the compressive strength of concrete as a function 

of eight variables and to know which components influence the strength. 

 

The Reduced Second Order Model optimized with box-cox has accurate prediction and interpretability of statistical 

inference among all regression models. This model can completely predict the values of the coefficients, with reasonably 

high prediction accuracy. Moreover, the low VIF values for the coefficient estimates indicated that we could rely on our 

coefficient estimates. The boosting method supported the result from Reduced Second Order Model. To summarize, the R-

squared value is 0.8091 with the mean squared error as 5.066599. 

  



7. Appendix 

 

Figure 7.1 Correlation Matrix 

 
 

Figure 7.2 Correlation Color Map 

 
 

Figure 7.3 OLS and Regression Tree Prediction Plot 

 
 

Figure 7.4 Boosting Prediction Plot 

 
 



Figure 7.5 Summary of Relative Influential Variable by Boosting 

 
 

 

 

 

 

Figure 7.6 Casual Linear Regression 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7.7 Reduced Linear Regression 

 
 

Figure 7.8 Linear Box-Cox Optimized 

 
 

 

Figure 7.9 OLS with Interaction Terms Only 

 
 

 

 

 



Figure 7.9 Reduced Interaction Only Model 

 
 

Figure 7.10 Second Order Model 

 
 


